Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Hum Brain Mapp ; 45(4): e26641, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38488470

RESUMEN

Gene expression varies across the brain. This spatial patterning denotes specialised support for particular brain functions. However, the way that a given gene's expression fluctuates across the brain may be governed by general rules. Quantifying patterns of spatial covariation across genes would offer insights into the molecular characteristics of brain areas supporting, for example, complex cognitive functions. Here, we use principal component analysis to separate general and unique gene regulatory associations with cortical substrates of cognition. We find that the region-to-region variation in cortical expression profiles of 8235 genes covaries across two major principal components: gene ontology analysis suggests these dimensions are characterised by downregulation and upregulation of cell-signalling/modification and transcription factors. We validate these patterns out-of-sample and across different data processing choices. Brain regions more strongly implicated in general cognitive functioning (g; 3 cohorts, total meta-analytic N = 39,519) tend to be more balanced between downregulation and upregulation of both major components (indicated by regional component scores). We then identify a further 29 genes as candidate cortical spatial correlates of g, beyond the patterning of the two major components (|ß| range = 0.18 to 0.53). Many of these genes have been previously associated with clinical neurodegenerative and psychiatric disorders, or with other health-related phenotypes. The results provide insights into the cortical organisation of gene expression and its association with individual differences in cognitive functioning.


Asunto(s)
Encéfalo , Trastornos Mentales , Humanos , Encéfalo/fisiología , Cognición/fisiología , Mapeo Encefálico , Trastornos Mentales/metabolismo , Expresión Génica , Imagen por Resonancia Magnética
2.
Biodivers Data J ; 12: e106199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344169

RESUMEN

Background: Incomplete species inventories for Antarctica represent a key challenge for comprehensive ecological research and conservation in the region. Additionally, data required to understand population dynamics, rates of evolution, spatial ranges, functional traits, physiological tolerances and species interactions, all of which are fundamental to disentangle the different functional elements of Antarctic biodiversity, are mostly missing. However, much of the fauna, flora and microbiota in the emerged ice-free land of the continent have an uncertain presence and/or unresolved status, with entire biodiversity compendia of prokaryotic groups (e.g. bacteria) being missing. All the available biodiversity information requires consolidation, cross-validation, re-assessment and steady systematic inclusion in order to create a robust catalogue of biodiversity for the continent. New information: We compiled, completed and revised eukaryotic species inventories present in terrestrial and freshwater ecosystems in Antarctica in a new living database: terrANTALife (version 1.0). The database includes the first integration in a compendium for many groups of eukaryotic microorganisms. We also introduce a first catalogue of amplicon sequence variants (ASVs) of prokaryotic biodiversity. Available compendia and literature to date were searched for Antarctic terrestrial and freshwater species, integrated, taxonomically harmonised and curated by experts to create comprehensive checklists of Antarctic organisms. The final inventories comprises 470 animal species (including vertebrates, free-living invertebrates and parasites), 306 plants (including all Viridiplantae: embryophytes and green algae), 997 fungal species and 434 protists (sensu lato). We also provide a first account for many groups of microorganisms, including non-lichenised fungi and multiple groups of eukaryotic unicellular species (Stramenophila, Alveolata and Rhizaria (SAR), Chromists and Amoeba), jointly referred to as "protists". In addition, we identify 1753 bacterial (obtained from 348117 ASVs) and 34 archaeal genera (from 1848 ASVs), as well as, at least, 14 virus families. We formulate a basic tree of life in Antarctica with the main lineages listed in the region and their "known-accepted-species" numbers.

3.
J Affect Disord ; 351: 983-993, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220104

RESUMEN

BACKGROUND: Multiple brain imaging studies of negative emotional bias in major depressive disorder (MDD) have used images of fearful facial expressions and focused on the amygdala and the prefrontal cortex. The results have, however, been inconsistent, potentially due to small sample sizes (typically N<50). It remains unclear if any alterations are a characteristic of current depression or of past experience of depression, and whether there are MDD-related changes in effective connectivity between the two brain regions. METHODS: Activations and effective connectivity between the amygdala and dorsolateral prefrontal cortex (DLPFC) in response to fearful face stimuli were studied in a large population-based sample from Generation Scotland. Participants either had no history of MDD (N=664 in activation analyses, N=474 in connectivity analyses) or had a diagnosis of MDD during their lifetime (LMDD, N=290 in activation analyses, N=214 in connectivity analyses). The within-scanner task involved implicit facial emotion processing of neutral and fearful faces. RESULTS: Compared to controls, LMDD was associated with increased activations in left amygdala (PFWE=0.031,kE=4) and left DLPFC (PFWE=0.002,kE=33), increased mean bilateral amygdala activation (ß=0.0715,P=0.0314), and increased inhibition from left amygdala to left DLPFC, all in response to fearful faces contrasted to baseline. Results did not appear to be attributable to depressive illness severity or antidepressant medication status at scan time. LIMITATIONS: Most studied participants had past rather than current depression, average severity of ongoing depression symptoms was low, and a substantial proportion of participants were receiving medication. The study was not longitudinal and the participants were only assessed a single time. CONCLUSIONS: LMDD is associated with hyperactivity of the amygdala and DLPFC, and with stronger amygdala to DLPFC inhibitory connectivity, all in response to fearful faces, unrelated to depression severity at scan time. These results help reduce inconsistency in past literature and suggest disruption of 'bottom-up' limbic-prefrontal effective connectivity in depression.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Depresión , Miedo/fisiología , Emociones/fisiología , Corteza Prefrontal/diagnóstico por imagen , Mapeo Encefálico , Imagen por Resonancia Magnética/métodos , Expresión Facial
4.
Brain Commun ; 5(5): fcad225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680671

RESUMEN

We investigate associations between normal-appearing white matter microstructural integrity in cognitively normal ∼70-year-olds and concurrently measured brain health and cognition, demographics, genetics and life course cardiovascular health. Participants born in the same week in March 1946 (British 1946 birth cohort) underwent PET-MRI around age 70. Mean standardized normal-appearing white matter integrity metrics (fractional anisotropy, mean diffusivity, neurite density index and orientation dispersion index) were derived from diffusion MRI. Linear regression was used to test associations between normal-appearing white matter metrics and (i) concurrent measures, including whole brain volume, white matter hyperintensity volume, PET amyloid and cognition; (ii) the influence of demographic and genetic predictors, including sex, childhood cognition, education, socio-economic position and genetic risk for Alzheimer's disease (APOE-ɛ4); (iii) systolic and diastolic blood pressure and cardiovascular health (Framingham Heart Study Cardiovascular Risk Score) across adulthood. Sex interactions were tested. Statistical significance included false discovery rate correction (5%). Three hundred and sixty-two participants met inclusion criteria (mean age 70, 49% female). Higher white matter hyperintensity volume was associated with lower fractional anisotropy [b = -0.09 (95% confidence interval: -0.11, -0.06), P < 0.01], neurite density index [b = -0.17 (-0.22, -0.12), P < 0.01] and higher mean diffusivity [b = 0.14 (-0.10, -0.17), P < 0.01]; amyloid (in men) was associated with lower fractional anisotropy [b = -0.04 (-0.08, -0.01), P = 0.03)] and higher mean diffusivity [b = 0.06 (0.01, 0.11), P = 0.02]. Framingham Heart Study Cardiovascular Risk Score in later-life (age 69) was associated with normal-appearing white matter {lower fractional anisotropy [b = -0.06 (-0.09, -0.02) P < 0.01], neurite density index [b = -0.10 (-0.17, -0.03), P < 0.01] and higher mean diffusivity [b = 0.09 (0.04, 0.14), P < 0.01]}. Significant sex interactions (P < 0.05) emerged for midlife cardiovascular health (age 53) and normal-appearing white matter at 70: marginal effect plots demonstrated, in women only, normal-appearing white matter was associated with higher midlife Framingham Heart Study Cardiovascular Risk Score (lower fractional anisotropy and neurite density index), midlife systolic (lower fractional anisotropy, neurite density index and higher mean diffusivity) and diastolic (lower fractional anisotropy and neurite density index) blood pressure and greater blood pressure change between 43 and 53 years (lower fractional anisotropy and neurite density index), independently of white matter hyperintensity volume. In summary, poorer normal-appearing white matter microstructural integrity in ∼70-year-olds was associated with measures of cerebral small vessel disease, amyloid (in males) and later-life cardiovascular health, demonstrating how normal-appearing white matter can provide additional information to overt white matter disease. Our findings further show that greater 'midlife' cardiovascular risk and higher blood pressure were associated with poorer normal-appearing white matter microstructural integrity in females only, suggesting that women's brains may be more susceptible to the effects of midlife blood pressure and cardiovascular health.

5.
PLoS One ; 18(7): e0288967, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37506096

RESUMEN

Recurrent neuroinflammation in relapsing-remitting MS (RRMS) is thought to lead to neurodegeneration, resulting in progressive disability. Repeated magnetic resonance imaging (MRI) of the brain provides non-invasive measures of atrophy over time, a key marker of neurodegeneration. This study investigates regional neurodegeneration of the brain in recently-diagnosed RRMS using volumetry and voxel-based morphometry (VBM). RRMS patients (N = 354) underwent 3T structural MRI <6 months after diagnosis and 1-year follow-up, as part of the Scottish multicentre 'FutureMS' study. MRI data were processed using FreeSurfer to derive volumetrics, and FSL for VBM (grey matter (GM) only), to establish regional patterns of change in GM and normal-appearing white matter (NAWM) over time throughout the brain. Volumetric analyses showed a decrease over time (q<0.05) in bilateral cortical GM and NAWM, cerebellar GM, brainstem, amygdala, basal ganglia, hippocampus, accumbens, thalamus and ventral diencephalon. Additionally, NAWM and GM volume decreased respectively in the following cortical regions, frontal: 14 out of 26 regions and 16/26; temporal: 18/18 and 15/18; parietal: 14/14 and 11/14; occipital: 7/8 and 8/8. Left GM and NAWM asymmetry was observed in the frontal lobe. GM VBM analysis showed three major clusters of decrease over time: 1) temporal and subcortical areas, 2) cerebellum, 3) anterior cingulum and supplementary motor cortex; and four smaller clusters within the occipital lobe. Widespread GM and NAWM atrophy was observed in this large recently-diagnosed RRMS cohort, particularly in the brainstem, cerebellar GM, and subcortical and occipital-temporal regions; indicative of neurodegeneration across tissue types, and in accord with limited previous studies in early disease. Volumetric and VBM results emphasise different features of longitudinal lobar and loco-regional change, however identify consistent atrophy patterns across individuals. Atrophy measures targeted to specific brain regions may provide improved markers of neurodegeneration, and potential future imaging stratifiers and endpoints for clinical decision making and therapeutic trials.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Imagen por Resonancia Magnética/métodos , Enfermedades del Sistema Nervioso Central/patología , Atrofia/patología
6.
Neuropsychology ; 37(3): 315-329, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37011159

RESUMEN

OBJECTIVE: A major limitation of current suicide research is the lack of power to identify robust correlates of suicidal thoughts or behavior. Variation in suicide risk assessment instruments used across cohorts may represent a limitation to pooling data in international consortia. METHOD: Here, we examine this issue through two approaches: (a) an extensive literature search on the reliability and concurrent validity of the most commonly used instruments and (b) by pooling data (N ∼ 6,000 participants) from cohorts from the Enhancing NeuroImaging Genetics Through Meta-Analysis (ENIGMA) Major Depressive Disorder and ENIGMA-Suicidal Thoughts and Behaviour working groups, to assess the concurrent validity of instruments currently used for assessing suicidal thoughts or behavior. RESULTS: We observed moderate-to-high correlations between measures, consistent with the wide range (κ range: 0.15-0.97; r range: 0.21-0.94) reported in the literature. Two common multi-item instruments, the Columbia Suicide Severity Rating Scale and the Beck Scale for Suicidal Ideation were highly correlated with each other (r = 0.83). Sensitivity analyses identified sources of heterogeneity such as the time frame of the instrument and whether it relies on self-report or a clinical interview. Finally, construct-specific analyses suggest that suicide ideation items from common psychiatric questionnaires are most concordant with the suicide ideation construct of multi-item instruments. CONCLUSIONS: Our findings suggest that multi-item instruments provide valuable information on different aspects of suicidal thoughts or behavior but share a modest core factor with single suicidal ideation items. Retrospective, multisite collaborations including distinct instruments should be feasible provided they harmonize across instruments or focus on specific constructs of suicidality. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico , Reproducibilidad de los Resultados , Estudios Retrospectivos , Ideación Suicida , Medición de Riesgo
7.
bioRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36993650

RESUMEN

Gene expression varies across the brain. This spatial patterning denotes specialised support for particular brain functions. However, the way that a given gene's expression fluctuates across the brain may be governed by general rules. Quantifying patterns of spatial covariation across genes would offer insights into the molecular characteristics of brain areas supporting, for example, complex cognitive functions. Here, we use principal component analysis to separate general and unique gene regulatory associations with cortical substrates of cognition. We find that the region-to-region variation in cortical expression profiles of 8235 genes covaries across two major principal components : gene ontology analysis suggests these dimensions are characterised by downregulation and upregulation of cell-signalling/modification and transcription factors. We validate these patterns out-of-sample and across different data processing choices. Brain regions more strongly implicated in general cognitive functioning (g; 3 cohorts, total meta-analytic N = 39,519) tend to be more balanced between downregulation and upregulation of both major components (indicated by regional component scores). We then identify a further 41 genes as candidate cortical spatial correlates of g, beyond the patterning of the two major components (|ß| range = 0.15 to 0.53). Many of these genes have been previously associated with clinical neurodegenerative and psychiatric disorders, or with other health-related phenotypes. The results provide insights into the cortical organisation of gene expression and its association with individual differences in cognitive functioning.

8.
Eur Psychiatry ; 66(1): e19, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36697368

RESUMEN

INTRODUCTION: Childhood trauma and adversity are common across societies and have strong associations with physical and psychiatric morbidity throughout the life-course. One possible mechanism through which childhood trauma may predispose individuals to poor psychiatric outcomes is via associations with brain structure. This study aimed to elucidate the associations between childhood trauma and brain structure across two large, independent community cohorts. METHODS: The two samples comprised (i) a subsample of Generation Scotland (n=1,024); and (ii) individuals from UK Biobank (n=27,202). This comprised n=28,226 for mega-analysis. MRI scans were processed using Free Surfer, providing cortical, subcortical, and global brain metrics. Regression models were used to determine associations between childhood trauma measures and brain metrics and psychiatric phenotypes. RESULTS: Childhood trauma associated with lifetime depression across cohorts (OR 1.06 GS, 1.23 UKB), and related to early onset and recurrent course within both samples. There was evidence for associations between childhood trauma and structural brain metrics. This included reduced global brain volume, and reduced cortical surface area with highest effects in the frontal (ß=-0.0385, SE=0.0048, p(FDR)=5.43x10-15) and parietal lobes (ß=-0.0387, SE=0.005, p(FDR)=1.56x10-14). At a regional level the ventral diencephalon (VDc) displayed significant associations with childhood trauma measures across both cohorts and at mega-analysis (ß=-0.0232, SE=0.0039, p(FDR)=2.91x10-8). There were also associations with reduced hippocampus, thalamus, and nucleus accumbens volumes. DISCUSSION: Associations between childhood trauma and reduced global and regional brain volumes were found, across two independent UK cohorts, and at mega-analysis. This provides robust evidence for a lasting effect of childhood adversity on brain structure.


Asunto(s)
Experiencias Adversas de la Infancia , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Hipocampo , Lóbulo Parietal
9.
Nat Commun ; 13(1): 4670, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945220

RESUMEN

Characterising associations between the methylome, proteome and phenome may provide insight into biological pathways governing brain health. Here, we report an integrated DNA methylation and phenotypic study of the circulating proteome in relation to brain health. Methylome-wide association studies of 4058 plasma proteins are performed (N = 774), identifying 2928 CpG-protein associations after adjustment for multiple testing. These are independent of known genetic protein quantitative trait loci (pQTLs) and common lifestyle effects. Phenome-wide association studies of each protein are then performed in relation to 15 neurological traits (N = 1,065), identifying 405 associations between the levels of 191 proteins and cognitive scores, brain imaging measures or APOE e4 status. We uncover 35 previously unreported DNA methylation signatures for 17 protein markers of brain health. The epigenetic and proteomic markers we identify are pertinent to understanding and stratifying brain health.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proteoma , Biomarcadores/metabolismo , Encéfalo/metabolismo , Islas de CpG/genética , Metilación de ADN/genética , Epigenoma , Proteoma/genética , Proteoma/metabolismo , Proteómica
10.
Eur Psychiatry ; 65(1): e44, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35899848

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is a polygenic disorder associated with brain alterations but until recently, there have been no brain-based metrics to quantify individual-level variation in brain morphology. Here, we evaluated and compared the performance of a new brain-based 'Regional Vulnerability Index' (RVI) with polygenic risk scores (PRS), in the context of MDD. We assessed associations with syndromal MDD in an adult sample (N = 702, age = 59 ± 10) and with subclinical depressive symptoms in a longitudinal adolescent sample (baseline N = 3,825, age = 10 ± 1; 2-year follow-up N = 2,081, age = 12 ± 1). METHODS: MDD-RVIs quantify the correlation of the individual's corresponding brain metric with the expected pattern for MDD derived in an independent sample. Using the same methodology across samples, subject-specific MDD-PRS and six MDD-RVIs based on different brain modalities (subcortical volume, cortical thickness, cortical surface area, mean diffusivity, fractional anisotropy, and multimodal) were computed. RESULTS: In adults, MDD-RVIs (based on white matter and multimodal measures) were more strongly associated with MDD (ß = 0.099-0.281, PFDR = 0.001-0.043) than MDD-PRS (ß = 0.056-0.152, PFDR = 0.140-0.140). In adolescents, depressive symptoms were associated with MDD-PRS at baseline and follow-up (ß = 0.084-0.086, p = 1.38 × 10-4-4.77 × 10-4) but not with any MDD-RVIs (ß < 0.05, p > 0.05). CONCLUSIONS: Our results potentially indicate the ability of brain-based risk scores to capture a broader range of risk exposures than genetic risk scores in adults and are also useful in helping us to understand the temporal origins of depression-related brain features. Longitudinal data, specific to the developmental period and on white matter measures, will be useful in informing risk for subsequent psychiatric illness.


Asunto(s)
Trastorno Depresivo Mayor , Adolescente , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Niño , Trastorno Depresivo Mayor/epidemiología , Humanos , Persona de Mediana Edad , Factores de Riesgo
12.
Nat Neurosci ; 25(4): 421-432, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35383335

RESUMEN

Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.


Asunto(s)
Estudio de Asociación del Genoma Completo , Longevidad , Envejecimiento/genética , Encéfalo , Humanos , Longevidad/genética , Imagen por Resonancia Magnética
13.
Transl Psychiatry ; 12(1): 157, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418197

RESUMEN

Depression is assessed in various ways in research, with large population studies often relying on minimal phenotyping. Genetic results suggest clinical diagnoses and self-report measures of depression show some core similarities, but also important differences. It is not yet clear how neuroimaging associations depend on levels of phenotyping. We studied 39,300 UK Biobank imaging participants (20,701 female; aged 44.6 to 82.3 years, M = 64.1, SD = 7.5) with structural neuroimaging and lifetime depression data. Past depression phenotypes included a single-item self-report measure, an intermediate measure of 'probable' lifetime depression, derived from multiple questionnaire items relevant to a history of depression, and a retrospective clinical diagnosis according to DSM-IV criteria. We tested (i) associations between brain structural measures and each depression phenotype, and (ii) effects of phenotype on these associations. Depression-brain structure associations were small (ß < 0.1) for all phenotypes, but still significant after FDR correction for many regional metrics. Lifetime depression was consistently associated with reduced white matter integrity across phenotypes. Cortical thickness showed negative associations with Self-reported Depression in particular. Phenotype effects were small across most metrics, but significant for cortical thickness in most regions. We report consistent effects of lifetime depression in brain structural measures, including reduced integrity of thalamic radiations and association fibres. We also observed significant differences in associations with cortical thickness across depression phenotypes. Although these results did not relate to level of phenotyping as expected, effects of phenotype definition are still an important consideration for future depression research.


Asunto(s)
Bancos de Muestras Biológicas , Depresión , Depresión/diagnóstico por imagen , Femenino , Humanos , Masculino , Neuroimagen , Estudios Retrospectivos , Reino Unido
14.
Genome Biol ; 23(1): 26, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039062

RESUMEN

BACKGROUND: Blood-based markers of cognitive functioning might provide an accessible way to track neurodegeneration years prior to clinical manifestation of cognitive impairment and dementia. RESULTS: Using blood-based epigenome-wide analyses of general cognitive function, we show that individual differences in DNA methylation (DNAm) explain 35.0% of the variance in general cognitive function (g). A DNAm predictor explains ~4% of the variance, independently of a polygenic score, in two external cohorts. It also associates with circulating levels of neurology- and inflammation-related proteins, global brain imaging metrics, and regional cortical volumes. CONCLUSIONS: As sample sizes increase, the ability to assess cognitive function from DNAm data may be informative in settings where cognitive testing is unreliable or unavailable.


Asunto(s)
Epigénesis Genética , Epigenoma , Cognición , Metilación de ADN , Estudio de Asociación del Genoma Completo/métodos
15.
Hum Brain Mapp ; 43(1): 385-398, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33073925

RESUMEN

The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed-effects models and mega-analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = -0.20), cornu ammonis (CA)1 (d = -0.18), CA2/3 (d = -0.11), CA4 (d = -0.19), molecular layer (d = -0.21), granule cell layer of dentate gyrus (d = -0.21), hippocampal tail (d = -0.10), subiculum (d = -0.15), presubiculum (d = -0.18), and hippocampal amygdala transition area (d = -0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non-users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.


Asunto(s)
Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Imagen por Resonancia Magnética , Neuroimagen , Trastorno Bipolar/tratamiento farmacológico , Genética , Hipocampo/efectos de los fármacos , Humanos
16.
Neurology ; 97(23): e2340-e2352, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34789543

RESUMEN

BACKGROUND AND OBJECTIVES: To investigate chronic inflammation in relation to cognitive aging by comparison of an epigenetic and serum biomarker of C-reactive protein and their associations with neuroimaging and cognitive outcomes. METHODS: At baseline, participants (n = 521) were cognitively normal, around 73 years of age (mean 72.4, SD 0.716), and had inflammation, vascular risk (cardiovascular disease history, hypertension, diabetes, smoking, alcohol consumption, body mass index), and neuroimaging (structural and diffusion MRI) data available. Baseline inflammatory status was quantified by a traditional measure of peripheral inflammation-serum C-reactive protein (CRP)-and an epigenetic measure (DNA methylation [DNAm] signature of CRP). Linear models were used to examine the inflammation-brain health associations; mediation analyses were performed to interrogate the relationship between chronic inflammation, brain structure, and cognitive functioning. RESULTS: We demonstrate that DNAm CRP shows significantly (on average 6.4-fold) stronger associations with brain health outcomes than serum CRP. DNAm CRP is associated with total brain volume (ß = -0.197, 95% confidence interval [CI] -0.28 to -0.12, p FDR = 8.42 × 10-6), gray matter volume (ß = -0.200, 95% CI -0.28 to -0.12, p FDR = 1.66 × 10-5), and white matter volume (ß = -0.150, 95% CI -0.23 to -0.07, p FDR = 0.001) and regional brain atrophy. We also find that DNAm CRP has an inverse association with global and domain-specific (speed, visuospatial, and memory) cognitive functioning and that brain structure partially mediates this CRP-cognitive association (up to 29.7%), dependent on lifestyle and health factors. DISCUSSION: These results support the hypothesis that chronic inflammation may contribute to neurodegenerative brain changes that underlie differences in cognitive ability in later life and highlight the potential of DNAm proxies for indexing chronic inflammatory status. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that a DNAm signature of CRP levels is more strongly associated with brain health outcomes than serum CRP levels.


Asunto(s)
Envejecimiento Cognitivo , Metilación de ADN , Envejecimiento , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Proteína C-Reactiva/metabolismo , Humanos , Inflamación
17.
Alzheimers Dement (Amst) ; 13(1): e12240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604499

RESUMEN

INTRODUCTION: This study aims to first discover plasma proteomic biomarkers relating to neurodegeneration (N) and vascular (V) damage in cognitively normal individuals and second to discover proteins mediating sex-related difference in N and V pathology. METHODS: Five thousand and thirty-two plasma proteins were measured in 1061 cognitively normal individuals (628 females and 433 males), nearly 90% of whom had magnetic resonance imaging measures of hippocampal volume (as N) and white matter hyperintensities (as V). RESULTS: Differential protein expression analysis and co-expression network analysis revealed different proteins and modules associated with N and V, respectively. Furthermore, causal mediation analysis revealed four proteins mediated sex-related difference in N and one protein mediated such difference in V damage. DISCUSSION: Once validated, the identified proteins could help to select cognitively normal individuals with N and V pathology for Alzheimer's disease clinical trials and provide targets for further mechanistic studies on brain sex differences, leading to sex-specific therapeutic strategies.

18.
Transl Psychiatry ; 11(1): 523, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642301

RESUMEN

Hypothalamic-pituitary-adrenal (HPA) axis dysregulation has been commonly reported in major depressive disorder (MDD), but with considerable heterogeneity of results; potentially due to the predominant use of acute measures of an inherently variable/phasic system. Chronic longer-term measures of HPA-axis activity have yet to be systematically examined in MDD, particularly in relation to brain phenotypes, and in the context of early-life/contemporaneous stress. Here, we utilise a temporally stable measure of cumulative HPA-axis function (hair glucocorticoids) to investigate associations between cortisol, cortisone and total glucocorticoids with concurrent measures of (i) lifetime-MDD case/control status and current symptom severity, (ii) early/current-life stress and (iii) structural neuroimaging phenotypes, in N = 993 individuals from Generation Scotland (mean age = 59.1 yrs). Increased levels of hair cortisol were significantly associated with reduced global and lobar brain volumes with reductions in the frontal, temporal and cingulate regions (ßrange = -0.057 to -0.104, all PFDR < 0.05). Increased levels of hair cortisone were significantly associated with MDD (lifetime-MDD status, current symptoms, and severity; ßrange = 0.071 to 0.115, all PFDR = < 0.05), with early-life adversity (ß = 0.083, P = 0.017), and with reduced global and regional brain volumes (global: ß = -0.059, P = 0.043; nucleus accumbens: ß = -0.075, PFDR = 0.044). Associations with total glucocorticoids followed a similar pattern to the cortisol findings. In this large community-based sample, elevated glucocorticoids were significantly associated with MDD, with early, but not later-life stress, and with reduced global and regional brain phenotypes. These findings provide important foundations for future mechanistic studies to formally explore causal relationships between early adversity, chronic rather than acute measures of glucocorticoids, and neurobiological associations relevant to the aetiology of MDD.


Asunto(s)
Experiencias Adversas de la Infancia , Trastorno Depresivo Mayor , Depresión , Glucocorticoides , Sustancia Gris , Humanos , Hidrocortisona , Sistema Hipotálamo-Hipofisario , Persona de Mediana Edad , Sistema Hipófiso-Suprarrenal
19.
Brain ; 144(12): 3769-3778, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34581779

RESUMEN

Development of cerebral small vessel disease, a major cause of stroke and dementia, may be influenced by early life factors. It is unclear whether these relationships are independent of each other, of adult socio-economic status or of vascular risk factor exposures. We examined associations between factors from birth (ponderal index, birth weight), childhood (IQ, education, socio-economic status), adult small vessel disease, and brain volumes, using data from four prospective cohort studies: STratifying Resilience And Depression Longitudinally (STRADL) (n = 1080; mean age = 59 years); the Dutch Famine Birth Cohort (n = 118; mean age = 68 years); the Lothian Birth Cohort 1936 (LBC1936; n = 617; mean age = 73 years), and the Simpson's cohort (n = 110; mean age = 78 years). We analysed each small vessel disease feature individually and summed to give a total small vessel disease score (range 1-4) in each cohort separately, then in meta-analysis, adjusted for vascular risk factors and adult socio-economic status. Higher birth weight was associated with fewer lacunes [odds ratio (OR) per 100 g = 0.93, 95% confidence interval (CI) = 0.88 to 0.99], fewer infarcts (OR = 0.94, 95% CI = 0.89 to 0.99), and fewer perivascular spaces (OR = 0.95, 95% CI = 0.91 to 0.99). Higher childhood IQ was associated with lower white matter hyperintensity burden (OR per IQ point = 0.99, 95% CI 0.98 to 0.998), fewer infarcts (OR = 0.98, 95% CI = 0.97 to 0.998), fewer lacunes (OR = 0.98, 95% CI = 0.97 to 0.999), and lower total small vessel disease burden (OR = 0.98, 95% CI = 0.96 to 0.999). Low education was associated with more microbleeds (OR = 1.90, 95% CI = 1.33 to 2.72) and lower total brain volume (mean difference = -178.86 cm3, 95% CI = -325.07 to -32.66). Low childhood socio-economic status was associated with fewer lacunes (OR = 0.62, 95% CI = 0.40 to 0.95). Early life factors are associated with worse small vessel disease in later life, independent of each other, vascular risk factors and adult socio-economic status. Risk for small vessel disease may originate in early life and provide a mechanistic link between early life factors and risk of stroke and dementia. Policies investing in early child development may improve lifelong brain health and contribute to the prevention of dementia and stroke in older age.


Asunto(s)
Peso al Nacer , Enfermedades de los Pequeños Vasos Cerebrales , Escolaridad , Inteligencia , Factores Socioeconómicos , Anciano , Enfermedades de los Pequeños Vasos Cerebrales/etiología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo
20.
Eur J Neurosci ; 54(6): 6281-6303, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34390586

RESUMEN

There is increasing interest in using data-driven unsupervised methods to identify structural underpinnings of common mental illnesses, including major depressive disorder (MDD) and associated traits such as cognition. However, studies are often limited to severe clinical cases with small sample sizes and most do not include replication. Here, we examine two relatively large samples with structural magnetic resonance imaging (MRI), measures of lifetime MDD and cognitive variables: Generation Scotland (GS subsample, N = 980) and UK Biobank (UKB, N = 8,900), for discovery and replication, using an exploratory approach. Regional measures of FreeSurfer derived cortical thickness (CT), cortical surface area (CSA), cortical volume (CV) and subcortical volume (subCV) were input into a clustering process, controlling for common covariates. The main analysis steps involved constructing participant K-nearest neighbour graphs and graph partitioning with Markov stability to determine optimal clustering of participants. Resultant clusters were (1) checked whether they were replicated in an independent cohort and (2) tested for associations with depression status and cognitive measures. Participants separated into two clusters based on structural brain measurements in GS subsample, with large Cohen's d effect sizes between clusters in higher order cortical regions, commonly associated with executive function and decision making. Clustering was replicated in the UKB sample, with high correlations of cluster effect sizes for CT, CSA, CV and subCV between cohorts across regions. The identified clusters were not significantly different with respect to MDD case-control status in either cohort (GS subsample: pFDR = .2239-.6585; UKB: pFDR = .2003-.7690). Significant differences in general cognitive ability were, however, found between the clusters for both datasets, for CSA, CV and subCV (GS subsample: d = 0.2529-.3490, pFDR  < .005; UKB: d = 0.0868-0.1070, pFDR  < .005). Our results suggest that there are replicable natural groupings of participants based on cortical and subcortical brain measures, which may be related to differences in cognitive performance, but not to the MDD case-control status.


Asunto(s)
Trastorno Depresivo Mayor , Encéfalo/diagnóstico por imagen , Análisis por Conglomerados , Cognición , Trastorno Depresivo Mayor/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...